p-group, metabelian, nilpotent (class 2), monomial
Aliases: C42.6C22, C4⋊C8⋊12C2, C4⋊C4.5C4, C4.73(C2×D4), C4.12(C4⋊C4), (C2×C4).17Q8, C4.22(C2×Q8), C2.5(C8○D4), (C2×C4).127D4, C22⋊C4.2C4, (C22×C8).7C2, C22.8(C4⋊C4), (C2×C8).46C22, C23.17(C2×C4), (C2×C4).149C23, C42⋊C2.5C2, (C2×M4(2)).14C2, C22.44(C22×C4), (C22×C4).112C22, C2.10(C2×C4⋊C4), (C2×C4).25(C2×C4), SmallGroup(64,105)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.6C22
G = < a,b,c,d | a4=b4=1, c2=b, d2=a2b2, ab=ba, cac-1=a-1b2, dad-1=ab2, bc=cb, bd=db, dcd-1=a2b2c >
Subgroups: 73 in 57 conjugacy classes, 41 normal (13 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C23, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C4⋊C8, C42⋊C2, C22×C8, C2×M4(2), C42.6C22
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, C22×C4, C2×D4, C2×Q8, C2×C4⋊C4, C8○D4, C42.6C22
Character table of C42.6C22
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | i | i | -i | -i | -i | -i | i | i | -i | -i | i | i | linear of order 4 |
ρ10 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -i | -i | i | i | i | i | -i | -i | i | i | -i | -i | linear of order 4 |
ρ11 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -i | -i | i | i | i | i | -i | -i | -i | -i | i | i | linear of order 4 |
ρ12 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | i | i | -i | -i | -i | -i | i | i | i | i | -i | -i | linear of order 4 |
ρ13 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | i | -i | -i | -i | i | i | i | -i | i | -i | -i | i | linear of order 4 |
ρ14 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -i | i | i | i | -i | -i | -i | i | -i | i | i | -i | linear of order 4 |
ρ15 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -i | i | i | i | -i | -i | -i | i | i | -i | -i | i | linear of order 4 |
ρ16 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | i | -i | -i | -i | i | i | i | -i | -i | i | i | -i | linear of order 4 |
ρ17 | 2 | -2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ20 | 2 | -2 | -2 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ85 | 0 | 2ζ87 | 2ζ83 | 0 | 0 | 2ζ8 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ8 | 0 | 2ζ83 | 2ζ87 | 0 | 0 | 2ζ85 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
ρ23 | 2 | -2 | 2 | -2 | 0 | 0 | -2i | -2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ85 | 0 | 0 | 2ζ83 | 2ζ87 | 0 | 2ζ8 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
ρ24 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ83 | 0 | 2ζ8 | 2ζ85 | 0 | 0 | 2ζ87 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
ρ25 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ87 | 0 | 2ζ85 | 2ζ8 | 0 | 0 | 2ζ83 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
ρ26 | 2 | -2 | 2 | -2 | 0 | 0 | -2i | -2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ8 | 0 | 0 | 2ζ87 | 2ζ83 | 0 | 2ζ85 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
ρ27 | 2 | -2 | 2 | -2 | 0 | 0 | 2i | 2i | -2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ83 | 0 | 0 | 2ζ85 | 2ζ8 | 0 | 2ζ87 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
ρ28 | 2 | -2 | 2 | -2 | 0 | 0 | 2i | 2i | -2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ87 | 0 | 0 | 2ζ8 | 2ζ85 | 0 | 2ζ83 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
(1 23 27 16)(2 13 28 20)(3 17 29 10)(4 15 30 22)(5 19 31 12)(6 9 32 24)(7 21 25 14)(8 11 26 18)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 19 31 16)(2 9 32 20)(3 21 25 10)(4 11 26 22)(5 23 27 12)(6 13 28 24)(7 17 29 14)(8 15 30 18)
G:=sub<Sym(32)| (1,23,27,16)(2,13,28,20)(3,17,29,10)(4,15,30,22)(5,19,31,12)(6,9,32,24)(7,21,25,14)(8,11,26,18), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,19,31,16)(2,9,32,20)(3,21,25,10)(4,11,26,22)(5,23,27,12)(6,13,28,24)(7,17,29,14)(8,15,30,18)>;
G:=Group( (1,23,27,16)(2,13,28,20)(3,17,29,10)(4,15,30,22)(5,19,31,12)(6,9,32,24)(7,21,25,14)(8,11,26,18), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,19,31,16)(2,9,32,20)(3,21,25,10)(4,11,26,22)(5,23,27,12)(6,13,28,24)(7,17,29,14)(8,15,30,18) );
G=PermutationGroup([[(1,23,27,16),(2,13,28,20),(3,17,29,10),(4,15,30,22),(5,19,31,12),(6,9,32,24),(7,21,25,14),(8,11,26,18)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,19,31,16),(2,9,32,20),(3,21,25,10),(4,11,26,22),(5,23,27,12),(6,13,28,24),(7,17,29,14),(8,15,30,18)]])
C42.6C22 is a maximal subgroup of
C23.7M4(2) C22⋊C4.C8 M4(2).42D4 (C2×D4).Q8 M4(2).3Q8 C4⋊C4.96D4 C4⋊C4.97D4 C4⋊C4.98D4 C22⋊C4.7D4 M4(2).12D4 M4(2).13D4 M4(2).Q8 M4(2).2Q8 C22⋊C4.Q8 C42.257C23 C42.674C23 C42.260C23 C42.261C23 C42.262C23 C42.264C23 C42.265C23 M4(2)⋊22D4 C42.286C23 C42.287C23 M4(2)⋊9Q8 C42.307C23 C42.308C23 C42.309C23 C42.310C23 C42.14C23 C42.15C23 C42.16C23 C42.17C23 C42.18C23 C42.19C23 C42.20C23 C42.21C23 C42.22C23 C42.23C23 C4.2- 1+4 C42.25C23 C42.26C23 C42.27C23 C42.28C23 C42.29C23 C42.30C23 C20⋊C8⋊C2
C42.D2p: C42.428D4 C42.107D4 C42.9D4 C42.10D4 C42.30D6 C42.43D6 C42.30D10 C42.43D10 ...
C4p.(C4⋊C4): C42.62Q8 C42.28Q8 Dic3⋊C8⋊C2 C12.88(C2×Q8) C20.65(C4⋊C4) C20.51(C4⋊C4) C4⋊C4.9F5 Dic7⋊C8⋊C2 ...
C42.6C22 is a maximal quotient of
C23.29C42 C20⋊C8⋊C2 C4⋊C4.9F5
C42.D2p: C42.90D4 C42.91D4 C42.Q8 C42.92D4 C42.21Q8 C42.45Q8 C42.95D4 C42.23Q8 ...
(C2×C8).D2p: C23.21M4(2) (C2×C8).195D4 Dic3⋊C8⋊C2 C12.88(C2×Q8) C20.65(C4⋊C4) C20.51(C4⋊C4) Dic7⋊C8⋊C2 C28.439(C2×D4) ...
Matrix representation of C42.6C22 ►in GL4(𝔽17) generated by
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 4 |
2 | 0 | 0 | 0 |
0 | 2 | 0 | 0 |
0 | 0 | 15 | 0 |
0 | 0 | 0 | 2 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 |
G:=sub<GL(4,GF(17))| [0,16,0,0,1,0,0,0,0,0,0,1,0,0,1,0],[4,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[2,0,0,0,0,2,0,0,0,0,15,0,0,0,0,2],[0,1,0,0,1,0,0,0,0,0,0,16,0,0,1,0] >;
C42.6C22 in GAP, Magma, Sage, TeX
C_4^2._6C_2^2
% in TeX
G:=Group("C4^2.6C2^2");
// GroupNames label
G:=SmallGroup(64,105);
// by ID
G=gap.SmallGroup(64,105);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,55,332,88]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=1,c^2=b,d^2=a^2*b^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a*b^2,b*c=c*b,b*d=d*b,d*c*d^-1=a^2*b^2*c>;
// generators/relations
Export